Home > Resources > Homework > Math > Page 96

Math

PopAi provides you with resources such as math solver, math tools, etc.

Calculate the integral of 1/(x + sqrt(x^2 – 1)) over the interval [-1, 1]

Calculate the integral of 1/(x + sqrt(x^2 – 1)) over the interval [-1, 1]

To calculate the integral:

$$ \int_{-1}^{1} \frac{1}{x + \sqrt{x^2 – 1}} dx $$

First, consider the substitution $ x = \cosh(t) $, which implies $ dx = \sinh(t) dt $.

When $ x = -1 $, $ t = i \pi $ and when $ x = 1 $, $ t = 0 $:

$$ \int_{i \pi}^{0} \frac{1}{\cosh(t) + \sinh(t)} \sinh(t) dt $$

Knowing that $ \cosh(t) + \sinh(t) = e^t $, the integral becomes:

$$ \int_{i \pi}^{0} \frac{\sinh(t)}{e^t} dt = \int_{i \pi}^{0} e^{-t} dt $$

Evaluating this gives:

$$ [ -e^{-t} ]_{i \pi}^{0} = -e^{0} + e^{-i \pi} = -1 + (-1) = -2 $$

Find the sine of a negative angle on the unit circle

Find the sine of a negative angle on the unit circle

On the unit circle, the sine of a negative angle $ \theta $ is given by:

$$ \sin(-\theta) = -\sin(\theta) $$

For example, if $ \theta = 30^{\circ} $, then:

$$ \sin(-30^{\circ}) = -\sin(30^{\circ}) = -\frac{1}{2} $$

Find the values of sin(θ), cos(θ), and tan(θ) at θ = π/4 on the unit circle

Find the values of sin(θ), cos(θ), and tan(θ) at θ = π/4 on the unit circle

To find the values of $ \sin(\theta) $, $ \cos(\theta) $, and $ \tan(\theta) $ at $ \theta = \frac{\pi}{4} $ on the unit circle, we use the standard trigonometric values:

\n

$$ \sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2} $$

\n

$$ \cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2} $$

\n

$$ \tan(\frac{\pi}{4}) = 1 $$

Determine the sine and cosine of an angle in the unit circle in the second quadrant

Determine the sine and cosine of an angle in the unit circle in the second quadrant

An angle $ \theta $ in the second quadrant of the unit circle ranges from $ 90^\circ $ to $ 180^\circ $ (or $ \frac{\pi}{2} $ to $ \pi $ radians). In this range, the sine of the angle is positive, and the cosine is negative.

For example, for $ \theta = 120^\circ $ (or $ \frac{2\pi}{3} $ radians):

$$ \sin(120^\circ) = \sin(\frac{2\pi}{3}) = \frac{\sqrt{3}}{2} $$

$$ \cos(120^\circ) = \cos(\frac{2\pi}{3}) = -\frac{1}{2} $$

Thus, the sine and cosine of an angle $ \theta $ in the second quadrant are:

$$ \sin(\theta) > 0 $$

$$ \cos(\theta) < 0 $$

Determine the coordinates and angles for points on the unit circle where the cosine value is 1/2

Determine the coordinates and angles for points on the unit circle where the cosine value is 1/2

To determine the coordinates where $\cos(\theta) = \frac{1}{2}$ on the unit circle, we need to find $\theta$ such that:

$$ \cos(\theta) = \frac{1}{2} $$

The angles that satisfy this condition are $\theta = \frac{\pi}{3}$ and $\theta = \frac{5\pi}{3}$. The corresponding coordinates are:

$$ (\frac{1}{2}, \frac{\sqrt{3}}{2}) $$ and $$ (\frac{1}{2}, -\frac{\sqrt{3}}{2}) $$

Find the angle in radians where the coordinates on the unit circle are (sqrt(3)/2, 1/2)

Find the angle in radians where the coordinates on the unit circle are (sqrt(3)/2, 1/2)

The coordinates $ \left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right) $ on the unit circle correspond to the angle $ \frac{\pi}{6} $ radians. We can confirm this by noting that $ \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} $ and $ \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} $.

Find the value of the integral of cot(x) from 0 to pi/4 using the unit circle

Find the value of the integral of cot(x) from 0 to pi/4 using the unit circle

To find the value of the integral of $ \cot(x) $ from $ 0 $ to $ \frac{\pi}{4} $ using the unit circle, we first express cotangent in terms of sine and cosine:

$$ \cot(x) = \frac{\cos(x)}{\sin(x)} $$

The integral becomes:

$$ \int_{0}^{\frac{\pi}{4}} \cot(x) \, dx = \int_{0}^{\frac{\pi}{4}} \frac{\cos(x)}{\sin(x)} \, dx $$

Let $ u = \sin(x) $. Then $ du = \cos(x) \, dx $.

Now, change the limits of integration accordingly: when $ x = 0 $, $ u = \sin(0) = 0 $, and when $ x = \frac{\pi}{4} $, $ u = \sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2} $.

Thus, the integral becomes:

$$ \int_{0}^{\frac{\sqrt{2}}{2}} \frac{1}{u} \, du = \left. \ln|u| \right|_{0}^{\frac{\sqrt{2}}{2}} $$

Evaluating this, we get:

$$ \ln \left( \frac{\sqrt{2}}{2} \right) – \ln(0) $$

Note that $ \ln(0) $ is undefined, suggesting an improper integral. Thus, we interpret the limit at $ u \to 0^{+} $:

$$ \lim_{u \to 0^{+}} \ln(u) = -\infty $$

The final value of the integral is:

$$ \boxed{-\infty} $$

Find the value of sec(π/4)

Find the value of sec(π/4)

To find the value of $ \sec(\frac{\pi}{4}) $, we first find the value of $ \cos(\frac{\pi}{4}) $. The cosine of $ \frac{\pi}{4} $ is $ \frac{\sqrt{2}}{2} $. Recall that $ \sec(x) = \frac{1}{\cos(x)} $, so:

$$ \sec(\frac{\pi}{4}) = \frac{1}{\cos(\frac{\pi}{4})} = \frac{1}{\frac{\sqrt{2}}{2}} = \sqrt{2} $$

Start Using PopAi Today

Suggested Content

More >

Finding the Tangent to a Unit Circle

Answer 1 The problem is to find the equation of the tangent to a unit circle at a given point.Given a unit circle with the equation:$x^2 + y^2 = 1$and a point \((a, b)\) on the circle. Since \((a, b)\) is on the circle, we have:$a^2 + b^2 = 1$To find...

Finding the Coordinates of a Point on the Unit Circle

Answer 1 Given an angle of $\theta = \frac{\pi}{3}$ radians, find the coordinates of the corresponding point on the unit circle.First, recall the unit circle definition: for any angle $\theta$, the coordinates of the point on the unit circle are...

Find the circumference of a circle with a radius of 7 units

Answer 1 First, we use the formula for the circumference of a circle:$C = 2 \pi r$Substituting the radius (r) given in the problem:$C = 2 \pi \times 7$Simplify the expression:$C = 14\pi$The circumference of the circle is:$14\pi \text{ units}$Answer 2...

Finding the Tangent Line to a Unit Circle at a Given Point

Answer 1 Consider the unit circle centered at the origin with the equation: $x^2 + y^2 = 1.$ To find the equation of the tangent line to the circle at a given point $P(a, b)$ on the circle, we follow these steps: 1. Verify that $P(a, b)$ lies on the...