Find the exact value of $ an( heta) $ given that $ sin( heta) = frac{3}{5} $ and $ heta $ is in the second quadrant.
Answer 1
Given that $ \sin(\theta) = \frac{3}{5} $ and $ \theta $ is in the second quadrant:
Since $ \sin(\theta) $ is positive in the second quadrant, $ \cos(\theta) $ must be negative:
Use the Pythagorean identity:
$ \sin^2(\theta) + \cos^2(\theta) = 1 $
Substitute $ \sin(\theta) = \frac{3}{5} $:
$ \left(\frac{3}{5}\right)^2 + \cos^2(\theta) = 1 $
$ \frac{9}{25} + \cos^2(\theta) = 1 $
$ \cos^2(\theta) = 1 – \frac{9}{25} = \frac{16}{25} $
Since $ \theta $ is in the second quadrant, $ \cos(\theta) $ is negative:
$ \cos(\theta) = -\frac{4}{5} $
Now find $ \tan(\theta) $:
$ \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} = \frac{\frac{3}{5}}{-\frac{4}{5}} = -\frac{3}{4} $
Thus, $ \tan(\theta) = -\frac{3}{4} $.
Answer 2
Given $ sin( heta) = frac{3}{5} $ and $ heta $ in the second quadrant,
Using $ sin^2( heta) + cos^2( heta) = 1 $:
$ frac{9}{25} + cos^2( heta) = 1 $
$ cos^2( heta) = frac{16}{25} $
Since $ heta $ is in the second quadrant, $ cos( heta) = -frac{4}{5} $
$ an( heta) = frac{sin( heta)}{cos( heta)} = frac{frac{3}{5}}{-frac{4}{5}} = -frac{3}{4} $
Answer 3
Given $ sin( heta) = frac{3}{5} $ and $ heta $ is in the second quadrant,
$ cos( heta) = -frac{4}{5} $
$ an( heta) = frac{sin( heta)}{cos( heta)} = -frac{3}{4} $
Start Using PopAi Today