Determine the coordinates on the unit circle for the angle whose cosine is $-frac{2}{3}$
Answer 1
To find the coordinates on the unit circle for the angle whose cosine is $-\frac{2}{3}$, we use the Pythagorean identity:
$\cos^2\theta + \sin^2\theta = 1$
Given that $\cos\theta = -\frac{2}{3}$, we substitute this into the identity:
$\left(-\frac{2}{3}\right)^2 + \sin^2\theta = 1$
This gives:
$\frac{4}{9} + \sin^2\theta = 1$
Subtract $\frac{4}{9}$ from both sides:
$\sin^2\theta = 1 – \frac{4}{9}$
$\sin^2\theta = \frac{9}{9} – \frac{4}{9}$
$\sin^2\theta = \frac{5}{9}$
Taking the square root of both sides, we get:
$\sin\theta = \pm\frac{\sqrt{5}}{3}$
So, the coordinates on the unit circle are:
$\left(-\frac{2}{3},\frac{\sqrt{5}}{3}\right) \text{and} \left(-\frac{2}{3},-\frac{\sqrt{5}}{3}\right)$
Answer 2
Given the cosine of an angle $ heta$ on the unit circle is $-frac{2}{3}$, we start from the Pythagorean identity:
$cos^2 heta + sin^2 heta = 1$
Substitute $cos heta = -frac{2}{3}$:
$left(-frac{2}{3}
ight)^2 + sin^2 heta = 1$
$frac{4}{9} + sin^2 heta = 1$
Isolate $sin^2 heta$ by subtracting $frac{4}{9}$ from 1:
$sin^2 heta = 1 – frac{4}{9}$
$sin^2 heta = frac{5}{9}$
Taking the square root, we get:
$sin heta = pmfrac{sqrt{5}}{3}$
Thus, the coordinates are:
$left(-frac{2}{3},frac{sqrt{5}}{3}
ight) ext{and} left(-frac{2}{3},-frac{sqrt{5}}{3}
ight)$
Answer 3
Start with $cos heta = -frac{2}{3}$:
$cos^2 heta + sin^2 heta = 1$
$left(-frac{2}{3}
ight)^2 + sin^2 heta = 1$
$frac{4}{9} + sin^2 heta = 1$
$sin^2 heta = frac{5}{9}$
$sin heta = pmfrac{sqrt{5}}{3}$
Coordinates:
$left(-frac{2}{3},frac{sqrt{5}}{3}
ight) ext{and} left(-frac{2}{3},-frac{sqrt{5}}{3}
ight)$
Start Using PopAi Today