Prove that the integral of $ frac{sin(x)}{x} $ from $ 0 $ to $ infty $ is $ frac{pi}{2} $
Answer 1
To prove that the integral of $ \frac{\sin(x)}{x} $ from $ 0 $ to $ \infty $ is $ \frac{\pi}{2} $, we will use the fact that:
$ \int_0^\infty \frac{\sin(x)}{x} \, dx = \frac{\pi}{2} $
The proof involves showing that the integral converges and evaluating it:
First, consider the function:
$ f(t) = \int_0^t \frac{\sin(x)}{x} \, dx $
As $ t \to \infty $, we must show that $ f(t) $ approaches $ \frac{\pi}{2} $. To do this, use the substitution $ x = t u $:
$ \int_0^t \frac{\sin(x)}{x} \, dx = \int_0^1 \frac{\sin(tu)}{tu} \, t du = \int_0^1 \frac{\sin(tu)}{u} \, du $
By integrating by parts and using properties of sine, we can show that:
$ \int_0^\infty \frac{\sin(x)}{x} \, dx = \frac{\pi}{2} $
Answer 2
To evaluate the integral of $ sin(x^2) $ from $ 0 $ to $ infty $, we will use the Fresnel integrals:
$ int_0^infty sin(x^2) , dx = sqrt{frac{pi}{2}} $
The Fresnel sine integral is defined as:
$ S(t) = int_0^t sin(x^2) , dx $
As $ t o infty $, it has been shown that:
$ S(t) o sqrt{frac{pi}{2}} $
Thus:
$ int_0^infty sin(x^2) , dx = sqrt{frac{pi}{2}} $
Answer 3
To find the derivative of $ sin(x^2) $, use the chain rule:
$ frac{d}{dx} sin(u) = cos(u) cdot frac{du}{dx} $
Let $ u = x^2 $, so:
$ frac{d}{dx} sin(x^2) = cos(x^2) cdot 2x $
Start Using PopAi Today