Home > Resources > Homework > Page 70

Homework

PopAi provides you with resources such as science, math, humanities, etc.

Find the exact values of sin and cos for all solutions in the third quadrant for the equation 2*sin(x) + 3*cos(x) = 1

Find the exact values of sin and cos for all solutions in the third quadrant for the equation 2*sin(x) + 3*cos(x) = 1

To find the exact values of $\sin(x)$ and $\cos(x)$ for all solutions in the third quadrant for the equation $2\sin(x) + 3\cos(x) = 1$, consider the trigonometric identity:

$$ \sin^2(x) + \cos^2(x) = 1 $$

In the third quadrant, both $ \sin(x) $ and $ \cos(x) $ are negative. Let

Find the value of tan(7π/6) and explain using the unit circle

Find the value of tan(7π/6) and explain using the unit circle

To find the value of $ \tan(\frac{7\pi}{6}) $ using the unit circle:

1. Locate the angle $\frac{7\pi}{6}$ on the unit circle. This angle is in the third quadrant.

2. The reference angle for $\frac{7\pi}{6}$ is $\frac{\pi}{6}$.

3. In the third quadrant, both sine and cosine are negative. Knowing the coordinates for $\frac{\pi}{6}$ are $(\frac{\sqrt{3}}{2}, \frac{1}{2})$:

The coordinates for $\frac{7\pi}{6}$ are $(-\frac{\sqrt{3}}{2}, -\frac{1}{2})$.

4. Finally, calculate the tangent value:

$$ \tan(\frac{7\pi}{6}) = \frac{\sin(\frac{7\pi}{6})}{\cos(\frac{7\pi}{6})} = \frac{-\frac{1}{2}}{-\frac{\sqrt{3}}{2}} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3} $$

Finding the sine, cosine, and tangent of 45 degrees using the unit circle

Finding the sine, cosine, and tangent of 45 degrees using the unit circle

To find the trigonometric functions of $45^\circ$ using the unit circle, note that $45^\circ$ corresponds to an angle in the first quadrant where both the x and y coordinates are equal.

Since the radius of the unit circle is 1, the coordinates of the point on the circle at $45^\circ$ are $\left( \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \right)$.

Thus:

$$ \sin(45^\circ) = \frac{\sqrt{2}}{2} $$

$$ \cos(45^\circ) = \frac{\sqrt{2}}{2} $$

$$ \tan(45^\circ) = 1 $$

Find the values of sin, cos, and tan for 45 degrees using the unit circle

Find the values of sin, cos, and tan for 45 degrees using the unit circle

To find the values of $ \sin $, $ \cos $, and $ \tan $ for $ 45^{\circ} $ using the unit circle, we start with:

\n

    \n

  • $$ \sin(45^{\circ}) = \frac{\sqrt{2}}{2} $$

  • \n

  • $$ \cos(45^{\circ}) = \frac{\sqrt{2}}{2} $$

  • \n

  • $$ \tan(45^{\circ}) = 1 $$

  • \n

Determine the cosine of an angle corresponding to the point (1/2, sqrt(3)/2) on the unit circle

Determine the cosine of an angle corresponding to the point (1/2, sqrt(3)/2) on the unit circle

To determine the cosine of the angle corresponding to the point $ \left( \frac{1}{2}, \frac{\sqrt{3}}{2} \right) $ on the unit circle, we must recognize the coordinates $(x, y)$ represent $(\cos(\theta), \sin(\theta))$.

In this case, the point is:

$$( \cos(\theta), \sin(\theta) ) = \left( \frac{1}{2}, \frac{\sqrt{3}}{2} \right)$$

Thus, the cosine of the angle is:

$$ \cos(\theta) = \frac{1}{2} $$

Find the coordinates of the point at an angle of pi/3 on the unit circle

Find the coordinates of the point at an angle of pi/3 on the unit circle

To find the coordinates of the point at an angle of $ \frac{\pi}{3} $ on the unit circle, we use the unit circle definition where the coordinates are given by $ (\cos\theta, \sin\theta) $.

For $ \theta = \frac{\pi}{3} $, we have:

$$ \cos \left( \frac{\pi}{3} \right) = \frac{1}{2} $$

$$ \sin \left( \frac{\pi}{3} \right) = \frac{\sqrt{3}}{2} $$

So, the coordinates are:

$$ \left( \frac{1}{2}, \frac{\sqrt{3}}{2} \right) $$

Determine the sine and cosine values of an angle 𝜃 in radians on the unit circle given that 𝜃 = 5𝜋/4

Determine the sine and cosine values of an angle 𝜃 in radians on the unit circle given that 𝜃 = 5𝜋/4

Given $\theta = \frac{5\pi}{4}$, we determine the sine and cosine values by examining the unit circle.

The angle $\frac{5\pi}{4}$ is located in the third quadrant, where sine and cosine values are negative. Specifically:

$$ \sin \left( \frac{5\pi}{4} \right) = -\frac{\sqrt{2}}{2} $$

$$ \cos \left( \frac{5\pi}{4} \right) = -\frac{\sqrt{2}}{2} $$

Find the exact values of the inverse trigonometric functions on the unit circle

Find the exact values of the inverse trigonometric functions on the unit circle

Consider the point $$P(-\frac{1}{2}, -\frac{\sqrt{3}}{2})$$ on the unit circle. Determine the exact values for the following inverse trigonometric functions:

1. $$\arcsin(-\frac{\sqrt{3}}{2})$$

2. $$\arccos(-\frac{1}{2})$$

3. $$\arctan(\frac{\sqrt{3}}{3})$$

Answer:

1. $$\arcsin(-\frac{\sqrt{3}}{2}) = -\frac{\pi}{3}$$

2. $$\arccos(-\frac{1}{2}) = \frac{2\pi}{3}$$

3. $$\arctan(\frac{\sqrt{3}}{3}) = \frac{\pi}{6}$$

Find the value of tan(θ) at θ = 3π/4 on the unit circle

Find the value of tan(θ) at θ = 3π/4 on the unit circle

To find the value of $ \tan(θ) $ at $ θ = \frac{3π}{4} $, we first identify the coordinates on the unit circle:

At $ θ = \frac{3π}{4} $, the coordinates are $ (-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}) $.

So, $ \tan(θ) $ is given by:

$$ \tan(θ) = \frac{y}{x} = \frac{\frac{\sqrt{2}}{2}}{-\frac{\sqrt{2}}{2}} = -1 $$

Therefore, $ \tan(θ) = -1 $.

Start Using PopAi Today

Suggested Content

More >

Strategies to Easily Learn the Unit Circle

Answer 1 To understand the unit circle, consider the following:1. Identify the key points on the unit circle where the angle is 0, $\frac{\pi}{6}$, $\frac{\pi}{4}$, $\frac{\pi}{3}$, and $\frac{\pi}{2}$. 2. Recall the coordinates of these points: $...

Finding Specific Tan Values on the Unit Circle

Answer 1 To find the exact $\tan$ values at specific angles on the unit circle, consider the following:1. $\theta = \frac{\pi}{4}$ At this angle, $\tan(\theta) = \tan\left(\frac{\pi}{4}\right) = 1$2. $\theta = \frac{2\pi}{3}$ At this angle,...

Find the Real Part of a Complex Number on the Unit Circle

Answer 1 Consider a complex number $z$ on the unit circle in the complex plane. The unit circle can be represented as $|z| = 1$. If $z = e^{i\theta}$, find the real part of $z$.Solution:Since $z = e^{i\theta}$, we can use Euler's formula, which...