Unit Circle

Explore the unit circle and its relationship to angles, radians, trigonometric ratios, and coordinates in the coordinate plane.

Find the value of tan(135°) using the unit circle

Find the value of tan(135°) using the unit circle

To find the value of $ \tan(135^\circ) $ using the unit circle, we need to recall that $ \tan\theta $ is the ratio of the y-coordinate to the x-coordinate of the point where the terminal side of the angle intersects the unit circle.

The angle $ 135^\circ $ is in the second quadrant, where the tangent is negative. It corresponds to the reference angle $ 45^\circ $.

For $ 45^\circ $, the coordinates on the unit circle are:

$$ ( \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} ) $$

In the second quadrant, the x-coordinate is negative, so the point is:

$$ (- \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} ) $$

Thus,

$$ \tan(135^\circ) = \frac{\frac{\sqrt{2}}{2}}{- \frac{\sqrt{2}}{2}} = -1 $$

Find the coordinates of the vertices of a triangle inscribed in a unit circle given angles

Find the coordinates of the vertices of a triangle inscribed in a unit circle given angles

Given the angles $ \theta_1, \theta_2, \theta_3 $ of the vertices of the triangle, the coordinates of the vertices on the unit circle are:

Vertex 1: $ ( \cos(\theta_1), \sin(\theta_1) ) $

Vertex 2: $ ( \cos(\theta_2), \sin(\theta_2) ) $

Vertex 3: $ ( \cos(\theta_3), \sin(\theta_3) ) $

Let

Solve for the angle θ in the unit circle where sin(θ)cos(θ) = 1/4 and 0 ≤ θ < 2π

Solve for the angle θ in the unit circle where sin(θ)cos(θ) = 1/4 and 0 ≤ θ < 2π

Given:
$$ \sin(\theta)\cos(\theta) = \frac{1}{4} $$

Using the double-angle identity:
$$ \sin(2\theta) = 2\sin(\theta)\cos(\theta) $$
We have:
$$ \sin(2\theta) = 2 \times \frac{1}{4} = \frac{1}{2} $$

Thus:
$$ 2\theta = \sin^{-1}(\frac{1}{2}) $$
Giving:
$$ 2\theta = \frac{\pi}{6} \text{ or } \frac{5\pi}{6} $$

Hence:
$$ \theta = \frac{\pi}{12} \text{ or } \frac{5\pi}{12} $$

Checking the interval $ 0 \leq \theta < 2\pi $:
The possible solutions are:
$$ \theta = \frac{\pi}{12}, \frac{5\pi}{12} \text{ or } \frac{13\pi}{12}, \frac{17\pi}{12} $$

Find the value of sin(2x) and cos(2x) on the unit circle

Find the value of sin(2x) and cos(2x) on the unit circle

To find the value of $\sin(2x)$ and $\cos(2x)$ on the unit circle, we can utilize the double-angle formulas:

$$ \sin(2x) = 2\sin(x)\cos(x) $$

$$ \cos(2x) = \cos^2(x) – \sin^2(x) $$

Given a point on the unit circle (a, b) where $a = \cos(x)$ and $b = \sin(x)$, we can substitute:

$$ \sin(2x) = 2ab $$

$$ \cos(2x) = a^2 – b^2 $$

Find the value of cos(π/4) on the unit circle

Find the value of cos(π/4) on the unit circle

On the unit circle, the angle $ \frac{\pi}{4} $ corresponds to 45 degrees. The coordinates of this point are ( \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} ). Therefore,

$$ \cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2} $$

Determine the coordinates of a point on the unit circle given the angle θ = π/4

Determine the coordinates of a point on the unit circle given the angle θ = π/4

To find the coordinates of a point on the unit circle given the angle $\theta = \frac{\pi}{4}$, we use the definitions of sine and cosine:

$$ x = \cos(\theta) $$

$$ y = \sin(\theta) $$

For $\theta = \frac{\pi}{4}$:

$$ x = \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} $$

$$ y = \sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} $$

Thus, the coordinates of the point are:

$$ \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) $$

Find the values of sin, cos, and tan for an angle of π/4 on the unit circle

Find the values of sin, cos, and tan for an angle of π/4 on the unit circle

To find the values of $ \sin, \cos, $ and $ \tan $ for an angle of $ \frac{\pi}{4} $ on the unit circle, we start with:

$$ \sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} $$

$$ \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} $$

$$ \tan\left(\frac{\pi}{4}\right) = 1 $$

Calculate the coordinates of a point on the unit circle at an angle of 5π/6

Calculate the coordinates of a point on the unit circle at an angle of 5π/6

To find the coordinates of a point on the unit circle at an angle of $ \frac{5\pi}{6} $, we use the unit circle properties.

In the unit circle, the coordinates of a point at an angle $ \theta $ are given by $ ( \cos(\theta), \sin(\theta) ) $.

So for $ \theta = \frac{5\pi}{6} $:

$$ \cos(\frac{5\pi}{6}) = -\frac{ \sqrt{3} }{2} $$

$$ \sin(\frac{5\pi}{6}) = \frac{1}{2} $$

Therefore, the coordinates are:

$$ \left( -\frac{ \sqrt{3} }{2}, \frac{1}{2} \right) $$

Find the value of tan(theta) using the unit circle

Find the value of tan(theta) using the unit circle

To find the value of $\tan(\theta)$ using the unit circle, we need to know the coordinates of the point on the unit circle that corresponds to the angle $\theta$.

On the unit circle, the coordinates of a point can be given as $(\cos(\theta), \sin(\theta))$.

The tangent of the angle $\theta$ is given by:

$$ \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} $$

Hence, if we know $\cos(\theta)$ and $\sin(\theta)$, we can find $\tan(\theta)$ by dividing $\sin(\theta)$ by $\cos(\theta)$.

Start Using PopAi Today

Suggested Content

More >

Determine the cosine value of -π/3 using the unit circle

Answer 1 First, recall that the unit circle is a circle with a radius of 1 centered at the origin of the coordinate plane. In the unit circle, the angle $\theta = -\pi/3$ is measured in the clockwise direction.To find the cosine of $-\pi/3$, we can...

Find the value of tan(-π/6) using the unit circle

Answer 1 We start by recognizing that the angle $-\frac{\pi}{6}$ is equivalent to rotating $\frac{\pi}{6}$ radians in the clockwise direction.On the unit circle, the point corresponding to $\frac{\pi}{6}$ radians is $(\frac{\sqrt{3}}{2},...

Understanding the representation of sine on the unit circle

Answer 1 To understand what sine represents on the unit circle, let's begin with the definition of the unit circle. The unit circle is a circle with a radius of 1 centered at the origin of the coordinate system.Consider a point $P(x, y)$ on the unit...