Given that $ an( heta) = 2 $ and $ heta $ is in the second quadrant, find the exact values of $ sin( heta) $ and $ cos( heta) $.
Answer 1
1. Given that $ \tan(\theta) = 2 $, we can write:
$ \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} = 2 $
Let $ \sin(\theta) = 2k $ and $ \cos(\theta) = -k $ (since $ \theta $ is in the second quadrant where cosine is negative). Then:
$ \frac{2k}{-k} = 2 $
2. From the Pythagorean identity:
$ \sin^2(\theta) + \cos^2(\theta) = 1 $
Substitute the values:
$ (2k)^2 + (-k)^2 = 1 $
$ 4k^2 + k^2 = 1 $
3. Solving for $ k $:
$ 5k^2 = 1 $
$ k^2 = \frac{1}{5} $
$ k = \pm \frac{1}{\sqrt{5}} $
4. Since $ \sin(\theta) = 2k $ and $ \cos(\theta) = -k $, we have:
$ \sin(\theta) = 2 \left( \frac{1}{\sqrt{5}} \right) = \frac{2}{\sqrt{5}} = \frac{2\sqrt{5}}{5} $
$ \cos(\theta) = – \left( \frac{1}{\sqrt{5}} \right) = -\frac{\sqrt{5}}{5} $
Answer 2
1. Given $ an( heta) = 2 $ and $ heta $ is in the second quadrant:
$ an( heta) = frac{sin( heta)}{cos( heta)} = 2 $
Let $ sin( heta) = 2k $ and $ cos( heta) = -k $.
2. Using the identity:
$ (2k)^2 + (-k)^2 = 1 $
$ 4k^2 + k^2 = 1 $
$ 5k^2 = 1
ightarrow k^2 = frac{1}{5} $
3. Thus:
$ sin( heta) = frac{2}{sqrt{5}} = frac{2sqrt{5}}{5} $
$ cos( heta) = -frac{1}{sqrt{5}} = -frac{sqrt{5}}{5} $
Answer 3
1. Given $ an( heta) = 2 $:
$ an( heta) = frac{sin( heta)}{cos( heta)} $
2. Let $ sin( heta) = 2k $ and $ cos( heta) = -k $:
$ 4k^2 + k^2 = 1
ightarrow k^2 = frac{1}{5} $
3. Therefore:
$ sin( heta) = frac{2sqrt{5}}{5} $
$ cos( heta) = -frac{sqrt{5}}{5} $
Start Using PopAi Today