Find the coordinates of a point on the unit circle that corresponds to a complex exponential representation $e^{i heta}$ given a specific angle $ heta$ in radians.
Answer 1
To find the coordinates of a point on the unit circle corresponding to $e^{i\theta}$ where $\theta = \frac{5\pi}{4}$, we use Euler’s formula:
$e^{i\theta} = \cos(\theta) + i\sin(\theta)$
Substituting $\theta = \frac{5\pi}{4}$:
$e^{i\frac{5\pi}{4}} = \cos\left(\frac{5\pi}{4}\right) + i\sin\left(\frac{5\pi}{4}\right)$
From the unit circle, we know:
$\cos\left(\frac{5\pi}{4}\right) = -\frac{\sqrt{2}}{2}$
$\sin\left(\frac{5\pi}{4}\right) = -\frac{\sqrt{2}}{2}$
Thus, the coordinates are:
$\left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right)$
Answer 2
Consider the point on the unit circle corresponding to the complex number $e^{i heta}$ where $ heta = frac{7pi}{6}$. Using Euler’s formula:
$e^{i heta} = cos( heta) + isin( heta)$
Substituting $ heta = frac{7pi}{6}$:
$e^{ifrac{7pi}{6}} = cosleft(frac{7pi}{6}
ight) + isinleft(frac{7pi}{6}
ight)$
From trigonometric identities:
$cosleft(frac{7pi}{6}
ight) = -frac{sqrt{3}}{2}$
$sinleft(frac{7pi}{6}
ight) = -frac{1}{2}$
Thus, the coordinates of the point are:
$left(-frac{sqrt{3}}{2}, -frac{1}{2}
ight)$
Answer 3
To find the coordinates of a point on the unit circle for $ heta = frac{11pi}{6}$, we use:
$e^{i heta} = cos( heta) + isin( heta)$
Substitute $ heta = frac{11pi}{6}$:
$e^{ifrac{11pi}{6}} = cosleft(frac{11pi}{6}
ight) + isinleft(frac{11pi}{6}
ight)$
We know:
$cosleft(frac{11pi}{6}
ight) = frac{sqrt{3}}{2}$
$sinleft(frac{11pi}{6}
ight) = -frac{1}{2}$
Therefore, the coordinates are:
$left(frac{sqrt{3}}{2}, -frac{1}{2}
ight)$
Start Using PopAi Today