Home > Resources > Homework > Page 57

Homework

PopAi provides you with resources such as science, math, humanities, etc.

Solve for the exact values of all angles θ in the interval [0, 2π) that satisfy cos(θ) = -1/2

Solve for the exact values of all angles θ in the interval [0, 2π) that satisfy cos(θ) = -1/2

To find the exact values of all angles $ \theta $ in the interval $ [0, 2\pi) $ that satisfy $ \cos(\theta) = -\frac{1}{2} $, we use the unit circle. The cosine value of $ -\frac{1}{2} $ corresponds to angles in the second and third quadrants. The reference angle is $ \frac{\pi}{3} $.

The angles are:

  • In the second quadrant: $ \pi – \frac{\pi}{3} = \frac{2\pi}{3} $
  • In the third quadrant: $ \pi + \frac{\pi}{3} = \frac{4\pi}{3} $

Thus, the solutions are:

$$ \theta = \frac{2\pi}{3}, \frac{4\pi}{3} $$

Determine the coordinates of the point where the terminal side of an angle of 5π/3 radians intersects the unit circle, and identify its quadrant

Determine the coordinates of the point where the terminal side of an angle of 5π/3 radians intersects the unit circle, and identify its quadrant

The angle $ \frac{5\pi}{3} $ radians is equivalent to 300 degrees (since $ \frac{5\pi}{3} \times \frac{180}{\pi} = 300 $ degrees).

This angle places the terminal side in the fourth quadrant.

In the fourth quadrant, the coordinates on the unit circle corresponding to an angle of 300 degrees are:

$$ ( \cos(300\degree), \sin(300\degree) ) $$

Since $ \cos(300\degree) = \cos(-60\degree) = \frac{1}{2} $ and $ \sin(300\degree) = \sin(-60\degree) = -\frac{\sqrt{3}}{2} $, the coordinates are:

$$ \left( \frac{1}{2}, -\frac{\sqrt{3}}{2} \right) $$

Thus, the terminal side intersects the unit circle at $ \left( \frac{1}{2}, -\frac{\sqrt{3}}{2} \right) $ in the fourth quadrant.

Calculate the integral of 1/(x + sqrt(x^2 – 1)) over the interval [-1, 1]

Calculate the integral of 1/(x + sqrt(x^2 – 1)) over the interval [-1, 1]

To calculate the integral:

$$ \int_{-1}^{1} \frac{1}{x + \sqrt{x^2 – 1}} dx $$

First, consider the substitution $ x = \cosh(t) $, which implies $ dx = \sinh(t) dt $.

When $ x = -1 $, $ t = i \pi $ and when $ x = 1 $, $ t = 0 $:

$$ \int_{i \pi}^{0} \frac{1}{\cosh(t) + \sinh(t)} \sinh(t) dt $$

Knowing that $ \cosh(t) + \sinh(t) = e^t $, the integral becomes:

$$ \int_{i \pi}^{0} \frac{\sinh(t)}{e^t} dt = \int_{i \pi}^{0} e^{-t} dt $$

Evaluating this gives:

$$ [ -e^{-t} ]_{i \pi}^{0} = -e^{0} + e^{-i \pi} = -1 + (-1) = -2 $$

Find the sine of a negative angle on the unit circle

Find the sine of a negative angle on the unit circle

On the unit circle, the sine of a negative angle $ \theta $ is given by:

$$ \sin(-\theta) = -\sin(\theta) $$

For example, if $ \theta = 30^{\circ} $, then:

$$ \sin(-30^{\circ}) = -\sin(30^{\circ}) = -\frac{1}{2} $$

Find the values of sin(θ), cos(θ), and tan(θ) at θ = π/4 on the unit circle

Find the values of sin(θ), cos(θ), and tan(θ) at θ = π/4 on the unit circle

To find the values of $ \sin(\theta) $, $ \cos(\theta) $, and $ \tan(\theta) $ at $ \theta = \frac{\pi}{4} $ on the unit circle, we use the standard trigonometric values:

\n

$$ \sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2} $$

\n

$$ \cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2} $$

\n

$$ \tan(\frac{\pi}{4}) = 1 $$

Determine the sine and cosine of an angle in the unit circle in the second quadrant

Determine the sine and cosine of an angle in the unit circle in the second quadrant

An angle $ \theta $ in the second quadrant of the unit circle ranges from $ 90^\circ $ to $ 180^\circ $ (or $ \frac{\pi}{2} $ to $ \pi $ radians). In this range, the sine of the angle is positive, and the cosine is negative.

For example, for $ \theta = 120^\circ $ (or $ \frac{2\pi}{3} $ radians):

$$ \sin(120^\circ) = \sin(\frac{2\pi}{3}) = \frac{\sqrt{3}}{2} $$

$$ \cos(120^\circ) = \cos(\frac{2\pi}{3}) = -\frac{1}{2} $$

Thus, the sine and cosine of an angle $ \theta $ in the second quadrant are:

$$ \sin(\theta) > 0 $$

$$ \cos(\theta) < 0 $$

Determine the coordinates and angles for points on the unit circle where the cosine value is 1/2

Determine the coordinates and angles for points on the unit circle where the cosine value is 1/2

To determine the coordinates where $\cos(\theta) = \frac{1}{2}$ on the unit circle, we need to find $\theta$ such that:

$$ \cos(\theta) = \frac{1}{2} $$

The angles that satisfy this condition are $\theta = \frac{\pi}{3}$ and $\theta = \frac{5\pi}{3}$. The corresponding coordinates are:

$$ (\frac{1}{2}, \frac{\sqrt{3}}{2}) $$ and $$ (\frac{1}{2}, -\frac{\sqrt{3}}{2}) $$

Find the angle in radians where the coordinates on the unit circle are (sqrt(3)/2, 1/2)

Find the angle in radians where the coordinates on the unit circle are (sqrt(3)/2, 1/2)

The coordinates $ \left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right) $ on the unit circle correspond to the angle $ \frac{\pi}{6} $ radians. We can confirm this by noting that $ \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} $ and $ \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} $.

Start Using PopAi Today

Suggested Content

More >

Find the value of tan(θ) at θ = 3π/4 on the unit circle

Answer 1 To find the value of $ \tan(θ) $ at $ θ = \frac{3π}{4} $, we first identify the coordinates on the unit circle:At $ θ = \frac{3π}{4} $, the coordinates are $ (-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}) $.So, $ \tan(θ) $ is given by:$ \tan(θ) =...

Find the values of x for which cos(x) = -1/2 on the unit circle

Answer 1 To find the values of $\cos(x) = -\frac{1}{2}$ on the unit circle, we start by considering the unit circle where $\cos(\theta)$ is the x-coordinate of the point corresponding to the angle $\theta$:\n$ \cos(x) = -\frac{1}{2} $\nWe know from...