Find the minimum value of cos(θ1+θ2+θ3) where θ1, θ2, θ3 are angles on the unit circle satisfying specific conditions
Let
Explore the unit circle and its relationship to angles, radians, trigonometric ratios, and coordinates in the coordinate plane.
Find the minimum value of cos(θ1+θ2+θ3) where θ1, θ2, θ3 are angles on the unit circle satisfying specific conditions
Let
Find the sine of a negative angle on the unit circle
On the unit circle, the sine of a negative angle $ \theta $ is given by:
$$ \sin(-\theta) = -\sin(\theta) $$
For example, if $ \theta = 30^{\circ} $, then:
$$ \sin(-30^{\circ}) = -\sin(30^{\circ}) = -\frac{1}{2} $$
Find the values of sin(θ), cos(θ), and tan(θ) at θ = π/4 on the unit circle
To find the values of $ \sin(\theta) $, $ \cos(\theta) $, and $ \tan(\theta) $ at $ \theta = \frac{\pi}{4} $ on the unit circle, we use the standard trigonometric values:
\n
$$ \sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2} $$
\n
$$ \cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2} $$
\n
$$ \tan(\frac{\pi}{4}) = 1 $$
Determine the sine and cosine of an angle in the unit circle in the second quadrant
An angle $ \theta $ in the second quadrant of the unit circle ranges from $ 90^\circ $ to $ 180^\circ $ (or $ \frac{\pi}{2} $ to $ \pi $ radians). In this range, the sine of the angle is positive, and the cosine is negative.
For example, for $ \theta = 120^\circ $ (or $ \frac{2\pi}{3} $ radians):
$$ \sin(120^\circ) = \sin(\frac{2\pi}{3}) = \frac{\sqrt{3}}{2} $$
$$ \cos(120^\circ) = \cos(\frac{2\pi}{3}) = -\frac{1}{2} $$
Thus, the sine and cosine of an angle $ \theta $ in the second quadrant are:
$$ \sin(\theta) > 0 $$
$$ \cos(\theta) < 0 $$
Determine the coordinates and angles for points on the unit circle where the cosine value is 1/2
To determine the coordinates where $\cos(\theta) = \frac{1}{2}$ on the unit circle, we need to find $\theta$ such that:
$$ \cos(\theta) = \frac{1}{2} $$
The angles that satisfy this condition are $\theta = \frac{\pi}{3}$ and $\theta = \frac{5\pi}{3}$. The corresponding coordinates are:
$$ (\frac{1}{2}, \frac{\sqrt{3}}{2}) $$ and $$ (\frac{1}{2}, -\frac{\sqrt{3}}{2}) $$
Find the angle in radians where the coordinates on the unit circle are (sqrt(3)/2, 1/2)
The coordinates $ \left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right) $ on the unit circle correspond to the angle $ \frac{\pi}{6} $ radians. We can confirm this by noting that $ \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} $ and $ \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} $.
Find the value of the integral of cot(x) from 0 to pi/4 using the unit circle
To find the value of the integral of $ \cot(x) $ from $ 0 $ to $ \frac{\pi}{4} $ using the unit circle, we first express cotangent in terms of sine and cosine:
$$ \cot(x) = \frac{\cos(x)}{\sin(x)} $$
The integral becomes:
$$ \int_{0}^{\frac{\pi}{4}} \cot(x) \, dx = \int_{0}^{\frac{\pi}{4}} \frac{\cos(x)}{\sin(x)} \, dx $$
Let $ u = \sin(x) $. Then $ du = \cos(x) \, dx $.
Now, change the limits of integration accordingly: when $ x = 0 $, $ u = \sin(0) = 0 $, and when $ x = \frac{\pi}{4} $, $ u = \sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2} $.
Thus, the integral becomes:
$$ \int_{0}^{\frac{\sqrt{2}}{2}} \frac{1}{u} \, du = \left. \ln|u| \right|_{0}^{\frac{\sqrt{2}}{2}} $$
Evaluating this, we get:
$$ \ln \left( \frac{\sqrt{2}}{2} \right) – \ln(0) $$
Note that $ \ln(0) $ is undefined, suggesting an improper integral. Thus, we interpret the limit at $ u \to 0^{+} $:
$$ \lim_{u \to 0^{+}} \ln(u) = -\infty $$
The final value of the integral is:
$$ \boxed{-\infty} $$
Find the value of sec(π/4)
To find the value of $ \sec(\frac{\pi}{4}) $, we first find the value of $ \cos(\frac{\pi}{4}) $. The cosine of $ \frac{\pi}{4} $ is $ \frac{\sqrt{2}}{2} $. Recall that $ \sec(x) = \frac{1}{\cos(x)} $, so:
$$ \sec(\frac{\pi}{4}) = \frac{1}{\cos(\frac{\pi}{4})} = \frac{1}{\frac{\sqrt{2}}{2}} = \sqrt{2} $$
Calculate tangent values on the unit circle for specific angles
Start Using PopAi Today
Suggested Content
More >
Answer 1 To find the value of $ \sin(\theta) $ and $ \cos(\theta) $ at different points on the unit circle, consider the following angles:1. $\theta = \frac{\pi}{6}$:$ \sin \left( \frac{\pi}{6} \right) = \frac{1}{2}, \quad \cos \left( \frac{\pi}{6}...
Answer 1 Fill in the blank: The value of $\sin(____)$ at the unit circle when the angle is $\frac{\pi}{2}$ is 1.Answer 2 The value of $sin(____)$ at the unit circle when the angle is $frac{pi}{2}$ is 1.Answer 3 The value of $sin(____)$ at...
Answer 1 To find the values of sine, cosine, and tangent of an angle $\theta$ when the angle is $225^\circ$, we use the unit circle:The angle $225^\circ$ lies in the third quadrant, where sine and cosine are both negative:$\sin(225^\circ) =...
Answer 1 To find the exact values of $ \sin\left(\frac{3\pi}{4}\right) $ and $ \cos\left(\frac{3\pi}{4}\right) $, we use the unit circle:$ \sin\left(\frac{3\pi}{4}\right) $ is located in the second quadrant, where the sine value is positive and the...
Answer 1 To calculate the sine and cosine values at $45^\circ$ using the unit circle, we recognize that a $45^\circ$ angle forms an isosceles right triangle in the unit circle.The coordinates of the point where the angle intersects the unit circle...
Answer 1 To find the angle that corresponds to the point $ \left( \frac{1}{2}, -\frac{\sqrt{3}}{2} \right) $ on the unit circle, we look at the coordinates.The x-coordinate is $ \frac{1}{2} $ and the y-coordinate is $ -\frac{\sqrt{3}}{2} $. These...