Find the values of tan(x) at different positions on the unit circle
To find the values of $ \tan(x) $ at different positions on the unit circle, we use the definition:
$$ \tan(x) = \frac{ \sin(x) }{ \cos(x) } $$
First, let
Explore the unit circle and its relationship to angles, radians, trigonometric ratios, and coordinates in the coordinate plane.
Find the values of tan(x) at different positions on the unit circle
To find the values of $ \tan(x) $ at different positions on the unit circle, we use the definition:
$$ \tan(x) = \frac{ \sin(x) }{ \cos(x) } $$
First, let
Calculate the integral of 1/(x + sqrt(x^2 – 1)) over the interval [-1, 1]
To calculate the integral:
$$ \int_{-1}^{1} \frac{1}{x + \sqrt{x^2 – 1}} dx $$
First, consider the substitution $ x = \cosh(t) $, which implies $ dx = \sinh(t) dt $.
When $ x = -1 $, $ t = i \pi $ and when $ x = 1 $, $ t = 0 $:
$$ \int_{i \pi}^{0} \frac{1}{\cosh(t) + \sinh(t)} \sinh(t) dt $$
Knowing that $ \cosh(t) + \sinh(t) = e^t $, the integral becomes:
$$ \int_{i \pi}^{0} \frac{\sinh(t)}{e^t} dt = \int_{i \pi}^{0} e^{-t} dt $$
Evaluating this gives:
$$ [ -e^{-t} ]_{i \pi}^{0} = -e^{0} + e^{-i \pi} = -1 + (-1) = -2 $$
Find the minimum value of cos(θ1+θ2+θ3) where θ1, θ2, θ3 are angles on the unit circle satisfying specific conditions
Let
Find the sine of a negative angle on the unit circle
On the unit circle, the sine of a negative angle $ \theta $ is given by:
$$ \sin(-\theta) = -\sin(\theta) $$
For example, if $ \theta = 30^{\circ} $, then:
$$ \sin(-30^{\circ}) = -\sin(30^{\circ}) = -\frac{1}{2} $$
Find the values of sin(θ), cos(θ), and tan(θ) at θ = π/4 on the unit circle
To find the values of $ \sin(\theta) $, $ \cos(\theta) $, and $ \tan(\theta) $ at $ \theta = \frac{\pi}{4} $ on the unit circle, we use the standard trigonometric values:
\n
$$ \sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2} $$
\n
$$ \cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2} $$
\n
$$ \tan(\frac{\pi}{4}) = 1 $$
Determine the sine and cosine of an angle in the unit circle in the second quadrant
An angle $ \theta $ in the second quadrant of the unit circle ranges from $ 90^\circ $ to $ 180^\circ $ (or $ \frac{\pi}{2} $ to $ \pi $ radians). In this range, the sine of the angle is positive, and the cosine is negative.
For example, for $ \theta = 120^\circ $ (or $ \frac{2\pi}{3} $ radians):
$$ \sin(120^\circ) = \sin(\frac{2\pi}{3}) = \frac{\sqrt{3}}{2} $$
$$ \cos(120^\circ) = \cos(\frac{2\pi}{3}) = -\frac{1}{2} $$
Thus, the sine and cosine of an angle $ \theta $ in the second quadrant are:
$$ \sin(\theta) > 0 $$
$$ \cos(\theta) < 0 $$
Determine the coordinates and angles for points on the unit circle where the cosine value is 1/2
To determine the coordinates where $\cos(\theta) = \frac{1}{2}$ on the unit circle, we need to find $\theta$ such that:
$$ \cos(\theta) = \frac{1}{2} $$
The angles that satisfy this condition are $\theta = \frac{\pi}{3}$ and $\theta = \frac{5\pi}{3}$. The corresponding coordinates are:
$$ (\frac{1}{2}, \frac{\sqrt{3}}{2}) $$ and $$ (\frac{1}{2}, -\frac{\sqrt{3}}{2}) $$
Find the angle in radians where the coordinates on the unit circle are (sqrt(3)/2, 1/2)
The coordinates $ \left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right) $ on the unit circle correspond to the angle $ \frac{\pi}{6} $ radians. We can confirm this by noting that $ \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} $ and $ \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} $.
Find the value of the integral of cot(x) from 0 to pi/4 using the unit circle
To find the value of the integral of $ \cot(x) $ from $ 0 $ to $ \frac{\pi}{4} $ using the unit circle, we first express cotangent in terms of sine and cosine:
$$ \cot(x) = \frac{\cos(x)}{\sin(x)} $$
The integral becomes:
$$ \int_{0}^{\frac{\pi}{4}} \cot(x) \, dx = \int_{0}^{\frac{\pi}{4}} \frac{\cos(x)}{\sin(x)} \, dx $$
Let $ u = \sin(x) $. Then $ du = \cos(x) \, dx $.
Now, change the limits of integration accordingly: when $ x = 0 $, $ u = \sin(0) = 0 $, and when $ x = \frac{\pi}{4} $, $ u = \sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2} $.
Thus, the integral becomes:
$$ \int_{0}^{\frac{\sqrt{2}}{2}} \frac{1}{u} \, du = \left. \ln|u| \right|_{0}^{\frac{\sqrt{2}}{2}} $$
Evaluating this, we get:
$$ \ln \left( \frac{\sqrt{2}}{2} \right) – \ln(0) $$
Note that $ \ln(0) $ is undefined, suggesting an improper integral. Thus, we interpret the limit at $ u \to 0^{+} $:
$$ \lim_{u \to 0^{+}} \ln(u) = -\infty $$
The final value of the integral is:
$$ \boxed{-\infty} $$
Find the value of sec(π/4)
To find the value of $ \sec(\frac{\pi}{4}) $, we first find the value of $ \cos(\frac{\pi}{4}) $. The cosine of $ \frac{\pi}{4} $ is $ \frac{\sqrt{2}}{2} $. Recall that $ \sec(x) = \frac{1}{\cos(x)} $, so:
$$ \sec(\frac{\pi}{4}) = \frac{1}{\cos(\frac{\pi}{4})} = \frac{1}{\frac{\sqrt{2}}{2}} = \sqrt{2} $$
Start Using PopAi Today
Suggested Content
More >
Answer 1 To find the equation of the circle passing through three points, we use the general form of the equation of a circle: $ (x - h)^2 + (y - k)^2 = r^2 $We substitute each point into the equation to get three equations with variables $ h $, $ k...
Answer 1 To calculate the coordinates of a point on the unit circle given an angle $\theta$ in radians, use the formulas: $ x = \cos(\theta) $ and $ y = \sin(\theta) $ For example, if $\theta = \frac{\pi}{4}$, then: $ x =...
Answer 1 To find the coordinates where $ f(\theta) = \sin(2\theta) $ intersects the unit circle, we start by setting $ \sin(2\theta) = y $.The unit circle equation is $ x^2 + y^2 = 1 $.Since $ y = \sin(2\theta) $, we have $ x^2 + \sin^2(2\theta) = 1...
Answer 1 To find the sine and cosine values at $ \frac{\pi}{3} $:\nThe unit circle values for $ \frac{\pi}{3} $ are:\n$ \sin \left( \frac{\pi}{3} \right) = \frac{\sqrt{3}}{2} $\n$ \cos \left( \frac{\pi}{3} \right) = \frac{1}{2} $Answer 2 To find the...
Answer 1 Given $ \sin(\theta) = \frac{1}{2} $ and $ \theta $ is in the first quadrant.We know that $ \sin^2(\theta) + \cos^2(\theta) = 1 $.So,$ \left( \frac{1}{2} \right)^2 + \cos^2(\theta) = 1 $$ \frac{1}{4} + \cos^2(\theta) = 1 $$ \cos^2(\theta) =...
Answer 1 To determine the quadrant of the angle $ \theta = \frac{\pi}{3} $, we convert it to degrees:$ \theta = \frac{\pi}{3} \times \frac{180}{\pi} = 60^{\circ} $The angle $ 60^{\circ} $ lies in the first quadrant.Answer 2 To find the quadrant of $...