Unit Circle

Explore the unit circle and its relationship to angles, radians, trigonometric ratios, and coordinates in the coordinate plane.

Find the sine and cosine of 150 degrees on the unit circle

Find the sine and cosine of 150 degrees on the unit circle

To find the sine and cosine of $150^\circ$, we first identify its reference angle:

The reference angle for $150^\circ$ is:

$$180^\circ – 150^\circ = 30^\circ$$

The sine and cosine of $30^\circ$ are:

$$ \sin(30^\circ) = \frac{1}{2} $$

$$ \cos(30^\circ) = \frac{\sqrt{3}}{2} $$

Since $150^\circ$ is in the second quadrant, the sine is positive and the cosine is negative:

$$ \sin(150^\circ) = \sin(30^\circ) = \frac{1}{2} $$

$$ \cos(150^\circ) = -\cos(30^\circ) = -\frac{\sqrt{3}}{2} $$

Find the equation of the inverse of the unit circle

Find the equation of the inverse of the unit circle

The equation of the unit circle is:

\n

$$ x^2 + y^2 = 1 $$

\n

To find the inverse, we use the transformation:

\n

$$ z = \x0crac{1}{x + yi} $$

\n

where $ z = u + vi $ and $ x + yi = \x0crac{1}{u – vi} $.

\n

Therefore, the inverse relation in terms of $u$ and $v$ becomes:

\n

$$ u = \x0crac{x}{x^2 + y^2} = x $$

\n

$$ v = \x0crac{-y}{x^2 + y^2} = -y $$

\n

Thus, the equation of the inverse of the unit circle is:

\n

$$ u^2 + v^2 = 1 $$

Find the values of arcsin(1/2) using the unit circle

Find the values of arcsin(1/2) using the unit circle

To find the values of $ \arcsin( \frac{1}{2} ) $ using the unit circle, we look for the angles $ \theta $ whose sine value is $ \frac{1}{2} $.

On the unit circle, the sine value is the y-coordinate. The angles with a y-coordinate of $ \frac{1}{2} $ are:

$$ \theta = \frac{\pi}{6} $$

or

$$ \theta = \frac{5\pi}{6} $$

So, the values of $ \arcsin( \frac{1}{2} ) $ are:

$$ \frac{\pi}{6} $ and $ \frac{5\pi}{6} $$

Find the exact values of tan(theta) for theta on the unit circle at each 30-degree increment, and explain the symmetry properties of the tangent function on the unit circle

Find the exact values of tan(theta) for theta on the unit circle at each 30-degree increment, and explain the symmetry properties of the tangent function on the unit circle

For each 30-degree increment ($ \theta $) on the unit circle, we have:

$ \tan(0^\circ) = 0 $

$ \tan(30^\circ) = \frac{1}{\sqrt{3}} $

$ \tan(60^\circ) = \sqrt{3} $

$ \tan(90^\circ) = \text{undefined} $

$ \tan(120^\circ) = -\sqrt{3} $

$ \tan(150^\circ) = -\frac{1}{\sqrt{3}} $

$ \tan(180^\circ) = 0 $

$ \tan(210^\circ) = \frac{1}{\sqrt{3}} $

$ \tan(240^\circ) = \sqrt{3} $

$ \tan(270^\circ) = \text{undefined} $

$ \tan(300^\circ) = -\sqrt{3} $

$ \tan(330^\circ) = -\frac{1}{\sqrt{3}} $

$ \tan(360^\circ) = 0 $

The tangent function is periodic with a period of $ 180^\circ $, hence $ \tan(\theta + 180^\circ) = \tan(\theta) $.

Find the exact values of trigonometric functions for given unit circle angles

Find the exact values of trigonometric functions for given unit circle angles

Given the angle $ \theta = \frac{5\pi}{4} $, find the exact values of $ \sin(\theta) $, $ \cos(\theta) $, and $ \tan(\theta) $:

$$ \sin\left(\frac{5\pi}{4}\right) = -\frac{\sqrt{2}}{2} $$

$$ \cos\left(\frac{5\pi}{4}\right) = -\frac{\sqrt{2}}{2} $$

$$ \tan\left(\frac{5\pi}{4}\right) = 1 $$

Find the value of tan at π/4 on the unit circle

Find the value of tan at π/4 on the unit circle

To find the value of $ \tan(\frac{\pi}{4}) $ on the unit circle, we use the definition of tangent, which is the ratio of sine to cosine:

$$ \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} $$

At $ \theta = \frac{\pi}{4} $, both $ \sin(\frac{\pi}{4}) $ and $ \cos(\frac{\pi}{4}) $ are equal to $ \frac{\sqrt{2}}{2} $:

$$ \tan(\frac{\pi}{4}) = \frac{\sin(\frac{\pi}{4})}{\cos(\frac{\pi}{4})} = \frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}} = 1 $$

Find the angles at which sin(θ) = cos(θ)

Find the angles at which sin(θ) = cos(θ)

To find the angles where $ \sin(\theta) = \cos(\theta) $, we know that:

$$ \sin(\theta) = \cos(\theta) $$

Dividing both sides by $ \cos(\theta) $, we get:

$$ \tan(\theta) = 1 $$

Thus, $ \theta $ must be an angle where the tangent is 1. We know that $ \tan(\theta) = 1 $ at:

$$ \theta = \frac{\pi}{4} + n\pi $$

where $ n $ is any integer. So, the angles are:

$$ \theta = \frac{\pi}{4}, \frac{5\pi}{4}, \frac{9\pi}{4}, … $$

Determine the sine value at an angle of π/4 on the unit circle

Determine the sine value at an angle of π/4 on the unit circle

To determine the sine value at an angle of $ \frac{\pi}{4} $ on the unit circle, recall that at this angle, the coordinates are:

$$ ( \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} ) $$

The sine value corresponds to the y-coordinate:

$$ \sin( \frac{\pi}{4} ) = \frac{\sqrt{2}}{2} $$

Determine tan(θ) from the unit circle at point P(x,y)

Determine tan(θ) from the unit circle at point P(x,y)

To determine $ \tan(\theta) $ from the unit circle at point $ P(x,y) $, recall that

$$ \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} $$

On the unit circle, you have $ P(x,y) = (\cos(\theta), \sin(\theta)) $, so

$$ \tan(\theta) = \frac{y}{x} $$

Ensure that $ x \neq 0 $ to avoid division by zero.

Start Using PopAi Today

Suggested Content

More >