Unit Circle

Explore the unit circle and its relationship to angles, radians, trigonometric ratios, and coordinates in the coordinate plane.

Find the coordinates of the point on the unit circle corresponding to the angle 7π/6

Find the coordinates of the point on the unit circle corresponding to the angle 7π/6

To find the coordinates on the unit circle for the angle $\frac{7\pi}{6}$, we use the unit circle properties:

The unit circle coordinates $(x, y)$ for an angle $\theta$ are $(\cos(\theta), \sin(\theta))$.

For $\theta = \frac{7\pi}{6}$:

$$ x = \cos\left(\frac{7\pi}{6}\right) $$

$$ y = \sin\left(\frac{7\pi}{6}\right) $$

Using trigonometric identities:

$$ \cos\left(\frac{7\pi}{6}\right) = -\frac{\sqrt{3}}{2} $$

$$ \sin\left(\frac{7\pi}{6}\right) = -\frac{1}{2} $$

Therefore, the coordinates are:

$$ \left( -\frac{\sqrt{3}}{2}, -\frac{1}{2} \right) $$

Find the values of sin(θ), cos(θ), and tan(θ) for θ = π/4 using the unit circle

Find the values of sin(θ), cos(θ), and tan(θ) for θ = π/4 using the unit circle

To find the values of $\sin(\theta)$, $\cos(\theta)$, and $\tan(\theta)$ for $\theta = \frac{\pi}{4}$ using the unit circle, we use the following:

On the unit circle, at $\theta = \frac{\pi}{4}$, the coordinates are: $(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$.

So,

$$ \sin(\frac{\pi}{4}) = \frac{1}{\sqrt{2}} $$

$$ \cos(\frac{\pi}{4}) = \frac{1}{\sqrt{2}} $$

$$ \tan(\frac{\pi}{4}) = \frac{\sin(\frac{\pi}{4})}{\cos(\frac{\pi}{4})} = 1 $$

Find the values of sin(θ) at specific angles on the unit circle

Find the values of sin(θ) at specific angles on the unit circle

To find the values of $ \sin(\theta) $ at specific angles on the unit circle, we can use the known values for common angles:

At $ \theta = 0 $, $$ \sin(0) = 0 $$

At $ \theta = \frac{\pi}{2} $, $$ \sin\left(\frac{\pi}{2}\right) = 1 $$

At $ \theta = \pi $, $$ \sin(\pi) = 0 $$

At $ \theta = \frac{3\pi}{2} $, $$ \sin\left(\frac{3\pi}{2}\right) = -1 $$

At $ \theta = 2\pi $, $$ \sin(2\pi) = 0 $$

Prove that tan(theta) sec(theta) = sin(theta) where theta is an angle in the unit circle

Prove that tan(theta) sec(theta) = sin(theta) where theta is an angle in the unit circle

We start with the definitions of the trigonometric functions on the unit circle.

\n

$$ \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} $$

\n

$$ \sec(\theta) = \frac{1}{\cos(\theta)} $$

\n

Multiplying these two expressions, we have:

\n

$$ \tan(\theta) \sec(\theta) = \frac{\sin(\theta)}{\cos(\theta)} \cdot \frac{1}{\cos(\theta)} $$

\n

Simplifying, we get:

\n

$$ \tan(\theta) \sec(\theta) = \frac{\sin(\theta)}{\cos^2(\theta)} \cdot \cos(\theta) $$

\n

Since $ \cos^2(\theta) \cos(\theta) = \cos(\theta) $, we have:

\n

$$ \tan(\theta) \sec(\theta) = \sin(\theta) \cdot \frac{1}{\cos^2(\theta)} = \sin(\theta) $$

\n

Thus, it is proven that:

\n

$$ \boxed{\tan(\theta) \sec(\theta) = \sin(\theta)} $$

Find the exact values of the coordinates of the point where the unit circle intersects the positive x-axis

Find the exact values of the coordinates of the point where the unit circle intersects the positive x-axis

The unit circle is defined by the equation:

$$ x^2 + y^2 = 1 $$

The positive x-axis means $ y = 0 $. Substituting $ y = 0 $ into the equation gives:

$$ x^2 + 0^2 = 1 $$

Simplifying, we find:

$$ x^2 = 1 $$

Taking the positive square root (since we are on the positive x-axis), we get:

$$ x = 1 $$

Thus, the coordinates of the point are:

$$ (1, 0) $$

Identify the sine value of an angle corresponding to $3\pi/4$

Identify the sine value of an angle corresponding to $3\pi/4$

We start by noting that $ \frac{3\pi}{4} $ is in the second quadrant of the unit circle.

In the second quadrant, the sine value is positive, so we have:

$$ \sin \left( \frac{3\pi}{4} \right) = \sin( \pi – \frac{\pi}{4}) = \sin \left( \frac{\pi}{4} \right) $$

Since $ \sin \left( \frac{\pi}{4} \right) = \frac{\sqrt{2}}{2} $:

$$ \sin \left( \frac{3\pi}{4} \right) = \frac{\sqrt{2}}{2} $$

Find the exact values of arcsec(2)

Find the exact values of arcsec(2)

To find the exact value of $ \text{arcsec}(2) $, we need to determine the angle $ \theta $ such that $ \sec(\theta) = 2 $ and $ \theta $ lies within the range of secant

Find $ sin(θ) $ and $ cos(θ) $ for θ on the unit circle

Find $ sin(θ) $ and $ cos(θ) $ for θ on the unit circle

To find $ \sin(\theta) $ and $ \cos(\theta) $ when $ \theta $ is on the unit circle:

Recall the unit circle definition: the unit circle is a circle with a radius of 1 centered at the origin. Therefore, if $ (x, y) $ is a point on the unit circle corresponding to the angle $ \theta $, then:

$$ \cos(\theta) = x $$

$$ \sin(\theta) = y $$

For example, at $ \theta = \frac{\pi}{4} $, we have:

$$ \cos \left( \frac{\pi}{4} \right) = \frac{\sqrt{2}}{2} $$

$$ \sin \left( \frac{\pi}{4} \right) = \frac{\sqrt{2}}{2} $$

Find the values of angles at which sin(θ) = 1/2 on the unit circle

Find the values of angles at which sin(θ) = 1/2 on the unit circle

To find the angles $ \theta $ such that $ \sin(\theta) = \frac{1}{2} $, we need to locate where the y-coordinate on the unit circle is $ \frac{1}{2} $.

The angles that satisfy this condition are:

$$ \theta = \frac{\pi}{6} + 2k\pi $$ and $$ \theta = \frac{5\pi}{6} + 2k\pi $$

where $ k $ is any integer.

Determine the pattern of points on the unit circle for $\theta$ within $[0, 2\pi]$

Determine the pattern of points on the unit circle for $\theta$ within $[0, 2\pi]$

Points on the unit circle are given by the coordinates $(\cos(\theta), \sin(\theta))$, where $\theta$ ranges from $0$ to $2\pi$.

One pattern to observe is that for every angle $\theta$:

$$ \cos(\theta + 2n\pi) = \cos(\theta) $$

$$ \sin(\theta + 2n\pi) = \sin(\theta) $$

where $n$ is an integer. This periodicity shows that the points repeat every $2\pi$.

Start Using PopAi Today

Suggested Content

More >