Home > Resources > Homework > Math > Page 18

Math

PopAi provides you with resources such as math solver, math tools, etc.

Determine the equation of the tangent line to the unit circle at the point (1/2, sqrt(3)/2)

Determine the equation of the tangent line to the unit circle at the point (1/2, sqrt(3)/2)

The equation of the unit circle is given by:

$$ x^2 + y^2 = 1 $$

To find the tangent line at the point $\left( \frac{1}{2}, \frac{\sqrt{3}}{2} \right)$, we need to determine the slope. Differentiating implicitly:

$$ 2x \frac{dx}{dt} + 2y \frac{dy}{dt} = 0 $$

At $\left( \frac{1}{2}, \frac{\sqrt{3}}{2} \right)$, the slope $m$ is:

$$ m = – \frac{x}{y} = – \frac{ \frac{1}{2} }{ \frac{\sqrt{3}}{2} } = – \frac{1}{\sqrt{3}} = – \frac{\sqrt{3}}{3} $$

The equation of the tangent line is:

$$ y – \frac{\sqrt{3}}{2} = – \frac{\sqrt{3}}{3} \left( x – \frac{1}{2} \right) $$

Simplifying the equation:

$$ y = – \frac{\sqrt{3}}{3} x + \frac{\sqrt{3}}{6} + \frac{\sqrt{3}}{2} $$

$$ y = – \frac{\sqrt{3}}{3} x + \frac{2\sqrt{3}}{3} $$

Find the exact values of sin, cos, and tan at 30 degrees on the unit circle

Find the exact values of sin, cos, and tan at 30 degrees on the unit circle

First, we need to convert $ 30^{\circ} $ to radians:

$$ 30^{\circ} = \frac{\pi}{6} $$

Using the unit circle, the coordinates for $ \frac{\pi}{6} $ are $ \left( \frac{\sqrt{3}}{2}, \frac{1}{2} \right) $

From this, we can find:

$$ \sin \frac{\pi}{6} = \frac{1}{2} $$

$$ \cos \frac{\pi}{6} = \frac{\sqrt{3}}{2} $$

$$ \tan \frac{\pi}{6} = \frac{\sin \frac{\pi}{6}}{\cos \frac{\pi}{6}} = \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3} $$

Determine the value of tan(θ) when sin(θ) = 3/5 and θ is in the first quadrant

Determine the value of tan(θ) when sin(θ) = 3/5 and θ is in the first quadrant

Given that $\sin(θ) = \frac{3}{5}$ and $θ$ is in the first quadrant, we can find $\cos(θ)$ using the Pythagorean identity:

$$\sin^2(θ) + \cos^2(θ) = 1$$

Plugging in the given value:

$$\left(\frac{3}{5}\right)^2 + \cos^2(θ) = 1$$

$$\frac{9}{25} + \cos^2(θ) = 1$$

$$\cos^2(θ) = 1 – \frac{9}{25} = \frac{16}{25}$$

Since $θ$ is in the first quadrant, $\cos(θ)$ is positive:

$$\cos(θ) = \frac{4}{5}$$

Now, we can find $\tan(θ)$:

$$\tan(θ) = \frac{\sin(θ)}{\cos(θ)} = \frac{\frac{3}{5}}{\frac{4}{5}} = \frac{3}{4}$$

Therefore, $\tan(θ) = \frac{3}{4}$.

Find the values of tan(θ) at various angles and verify using the unit circle

Find the values of tan(θ) at various angles and verify using the unit circle

To find the values of $ \tan(\theta) $ at various angles and verify using the unit circle, we consider the following angles: $ \theta = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4} $

1. For $ \theta = \frac{\pi}{4} $:

$$ \tan(\frac{\pi}{4}) = 1 $$

2. For $ \theta = \frac{3\pi}{4} $:

$$ \tan(\frac{3\pi}{4}) = -1 $$

3. For $ \theta = \frac{5\pi}{4} $:

$$ \tan(\frac{5\pi}{4}) = 1 $$

4. For $ \theta = \frac{7\pi}{4} $:

$$ \tan(\frac{7\pi}{4}) = -1 $$

Verification: Using the unit circle, we observe that at these angles, the tangent value is consistent with the coordinates (x, y) where $ \tan(\theta) = \frac{y}{x} $.

Determine the coordinates of a point on the unit circle where the tangent line has a slope of 3/4

Determine the coordinates of a point on the unit circle where the tangent line has a slope of 3/4

To determine the coordinates of a point on the unit circle where the tangent line has a slope of $\frac{3}{4}$, we start with the equation of the unit circle:

$$x^2 + y^2 = 1$$

The slope of the tangent line at a point $(x, y)$ on the circle can be found by differentiating implicitly:

$$2x + 2y\frac{dy}{dx} = 0$$

Solving for $\frac{dy}{dx}$, we get:

$$\frac{dy}{dx} = -\frac{x}{y}$$

We need the slope to equal $\frac{3}{4}$:

$$-\frac{x}{y} = \frac{3}{4}$$

This implies:

$$y = -\frac{4x}{3}$$

Substitute $y = -\frac{4x}{3}$ back into the unit circle equation:

$$x^2 + \left(-\frac{4x}{3}\right)^2 = 1$$

$$x^2 + \frac{16x^2}{9} = 1$$

$$\frac{25x^2}{9} = 1$$

$$x^2 = \frac{9}{25}$$

$$x = \pm \frac{3}{5}$$

Substitute $x$ back into $y = -\frac{4x}{3}$:

$$y = \mp \frac{4 \cdot \frac{3}{5}}{3} = \mp \frac{4}{5}$$

The coordinates are:

$$\left(\frac{3}{5}, -\frac{4}{5}\right)$$ and $$\left(-\frac{3}{5}, \frac{4}{5}\right)$$

Evaluate the integral of cos^3(x)sin(x) with respect to x

Evaluate the integral of cos^3(x)sin(x) with respect to x

To evaluate the integral of $ \cos^3(x)\sin(x) $ with respect to $ x $, we use a substitution method:

Let $ u = \cos(x) $, then $ du = -\sin(x) dx $. Consequently:

$$ \int \cos^3(x)\sin(x) dx = \int u^3 (-du) = -\int u^3 du $$

Now integrate:

$$ -\int u^3 du = -\frac{u^4}{4} + C $$

Substitute back $ \cos(x) $ for $ u $:

$$ -\frac{\cos^4(x)}{4} + C $$

The final answer is:

$$ -\frac{\cos^4(x)}{4} + C $$

Determine the cosine of an angle given in radians and convert it to degrees

Determine the cosine of an angle given in radians and convert it to degrees

Given an angle $ \theta = \frac{7\pi}{6} $ radians, we need to determine its cosine and convert the angle to degrees.

\n

First, convert the angle to degrees:\n

\n

$$ \theta = \frac{7\pi}{6} \cdot \frac{180^\circ}{\pi} = 210^\circ $$

\n

The angle $ 210^\circ $ lies in the third quadrant where the cosine is negative.

\n

Using the unit circle, we know:

\n

$$ \cos(210^\circ) = \cos(180^\circ + 30^\circ) = -\cos(30^\circ) $$

\n

Since $ \cos(30^\circ) = \frac{\sqrt{3}}{2} $, we have:

\n

$$ \cos(210^\circ) = -\frac{\sqrt{3}}{2} $$

\n

Thus, the cosine of $ \frac{7\pi}{6} $ radians is $ -\frac{\sqrt{3}}{2} $ and the angle in degrees is $ 210^\circ $.

Find the value of sec(θ) for θ in the unit circle

Find the value of sec(θ) for θ in the unit circle

To find the value of $ \sec(\theta) $ for $ \theta $ in the unit circle, we need to recall the definition of secant. The secant function is the reciprocal of the cosine function:

$$ \sec(\theta) = \frac{1}{\cos(\theta)} $$

Given that $ \theta $ is an angle in the unit circle, let’s consider $ \theta = \frac{\pi}{4} $ as an example. For this angle:

$$ \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} $$

Thus,

$$ \sec\left(\frac{\pi}{4}\right) = \frac{1}{\frac{\sqrt{2}}{2}} = \sqrt{2} $$

Start Using PopAi Today

Suggested Content

More >

Find the Sine, Cosine, and Tangent Values

Answer 1 Consider a point on the unit circle at an angle of $\theta = 45°$.We know that:$\sin(45°) = \frac{\sqrt{2}}{2}$$\cos(45°) = \frac{\sqrt{2}}{2}$$\tan(45°) = \frac{\sin(45°)}{\cos(45°)} = 1$Thus, the sine, cosine, and tangent values of 45° are...