”Find
Answer 1
To solve for $\theta$ in $\cot(\theta) = \frac{1}{\sqrt{3}}$, we start by recalling the definition of cotangent:
$\cot(\theta) = \frac{1}{\tan(\theta)}$
Given $\cot(\theta) = \frac{1}{\sqrt{3}}$, we have:
$\frac{1}{\tan(\theta)} = \frac{1}{\sqrt{3}}$
By taking reciprocals, we find:
$\tan(\theta) = \sqrt{3}$
The angles that satisfy $\tan(\theta) = \sqrt{3}$ on the unit circle are:
$\theta = \frac{\pi}{3} + k\pi$
where $k$ is any integer. Considering the interval $[0, 2\pi)$, we get:
$\theta = \frac{\pi}{3}, \frac{4\pi}{3}$
So, the angles are:
$\boxed{\frac{\pi}{3}, \frac{4\pi}{3}}$
Answer 2
To solve for $ heta$ where $cot( heta) = frac{1}{sqrt{3}}$, we use the relationship between cotangent and tangent:
$cot( heta) = frac{1}{ an( heta)}$
Given $cot( heta) = frac{1}{sqrt{3}}$, we find:
$ an( heta) = sqrt{3}$
The values of $ heta$ that satisfy $ an( heta) = sqrt{3}$ are:
$ heta = frac{pi}{3} + kpi$
where $k$ is an integer. For the interval $[0, 2pi)$, we have two solutions:
$ heta = frac{pi}{3}, frac{4pi}{3}$
Thus, the angles are:
$oxed{frac{pi}{3}, frac{4pi}{3}}$
Answer 3
Find $ heta$ such that $cot( heta) = frac{1}{sqrt{3}}$ in $[0, 2pi)$. Since $cot( heta) = frac{1}{ an( heta)}$, this implies:
$ an( heta) = sqrt{3}$
Thus:
$ heta = frac{pi}{3}, frac{4pi}{3}$
Therefore:
$oxed{frac{pi}{3}, frac{4pi}{3}}$
Start Using PopAi Today