Calculate the integral of $ frac{1}{1 + x^2} $ over the unit circle
Answer 1
To calculate the integral of $ \frac{1}{1 + x^2} $ over the unit circle, we first convert to polar coordinates:
$ x = r \cos(\theta), y = r \sin(\theta) $
In polar coordinates, the unit circle is defined as:
$ r = 1 $
Substituting in the integral:
$ \int_0^{2\pi} \frac{r}{1 + r^2 \cos^2(\theta)} d\theta $
Since $r = 1$:
$ \int_0^{2\pi} \frac{1}{1 + \cos^2(\theta)} d\theta $
Applying the Weierstrass substitution:
Let $ \tan(\theta/2) = t $, then $ d\theta = \frac{2}{1+t^2} dt $
The integral becomes:
$ \int_{-\infty}^{\infty} \frac{2}{1 + \cos^2(2 \arctan(t))} \frac{1}{1+t^2} dt $
After simplification, the integral reduces to:
$ \pi \int_{-\infty}^{\infty} \frac{2}{2 + t^2} \frac{1}{1+t^2} dt $
The final answer is:
$ \pi \ln{2} $
Answer 2
Convert to polar coordinates:
$ x = r cos( heta), y = r sin( heta) $
Unit circle: $ r = 1 $
Substitute:
$ int_0^{2pi} frac{r}{1 + r^2 cos^2( heta)} d heta $
Since $r = 1$:
$ int_0^{2pi} frac{1}{1 + cos^2( heta)} d heta $
Weierstrass substitution:
$ an( heta/2) = t $, $ d heta = frac{2}{1+t^2} dt $
Integral becomes:
$ int_{-infty}^{infty} frac{2}{1 + cos^2(2 arctan(t))} frac{1}{1+t^2} dt $
Simplified:
$ pi int_{-infty}^{infty} frac{2}{2 + t^2} frac{1}{1+t^2} dt $
Final answer:
$ pi ln{2} $
Answer 3
Convert to polar coordinates:
$ x = r cos( heta), y = r sin( heta) $
Unit circle: $ r = 1 $
Substitute:
$ int_0^{2pi} frac{1}{1 + cos^2( heta)} d heta $
Weierstrass substitution:
$ an( heta/2) = t $, $ d heta = frac{2}{1+t^2} dt $
Simplified integral:
$ pi int_{-infty}^{infty} frac{2}{2 + t^2} frac{1}{1+t^2} dt $
Final answer:
$ pi ln{2}
Start Using PopAi Today